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Abstract

Fluidelastic instability is the main mechanism that causes severe damages in flow-induced vibration. Experiments show

that grid-generated turbulence can affect the stability of the system, which is modeled as an Ornstein–Uhlenbeck process.

The dynamic stability of a four-dimensional system under real noise excitation is studied through the determination of the

p th moment Lyapunov exponent and the Lyapunov exponent. The partial differential eigenvalue equation governing the

moment Lyapunov exponent is established. For small noise amplitudes, a method of regular perturbation is used to

determine analytical expansions of the moment Lyapunov exponents and Lyapunov exponents, which are shown to be in

good agreement with those obtained using numerical approaches. The analytical method is applied to study the stability of

a cylinder in a shear flow, where fluidelastic instability is known to occur. The results demonstrate that the unstable system

can be stabilized under certain conditions and the effect of stabilization is proportional to the turbulence intensity, which

agrees with experimental observations.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Three mechanisms are usually considered to be responsible for flow-induced vibration and/or instability of a
cylinder in a cross-flow; they are vortex-induced lock-in resonance, fluidelastic instability, and turbulence-induced
buffeting. According to Naudascher and Rockwell [1], these three mechanisms represent three general sources of
excitation: the (flow) instability-induced excitation (IIE), the movement-induced excitation (MIE), and the
extraneously excited excitation (EIE), respectively. The total flow-induced force can then be expressed as

F ¼ FV þ FM þ F T , (1)

where the subscripts V, M, and T represent vortex-induced, motion-dependent, and turbulence-induced buffeting
forces, respectively. When the cylinder is rigid and fixed, its behavior becomes stationary even though there is a
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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cross-flow. In this case, the total flow-induced force becomes

F 0 ¼ F V0 þ FT0. (2)

The three mechanisms may co-exist in any flow-induced vibration problem. When that happens, the dynamic
behavior of the fluid–structure system becomes very complex. The tasks of a theoretical modeling study are to
formulate the problem in a general way, to simplify the formulation by identifying key mechanism(s), and
to demonstrate the main features for specific cases through dynamic analyses. In the present study, a single
circular cylinder in a shear flow with free-stream turbulence is considered. The aim of the investigation is to
identify the mechanisms that contribute to fluid–structure instability and to analyze the effect of free-stream
turbulence in detail.

For a single circular cylinder in a uniform flow, the main mechanism of unstable motion is considered to be
vortex-induced lock-in resonance [2,3]. In a recent modeling study, Zhu et al. [4] showed that this lock-in
resonance is accompanied by a parametric instability due to the fluid-damping force. On the other hand, Yu
et al. [5] showed that a single cylinder can undergo fluidelastic instability if the approach flow is not uniform,
e.g., a shear flow. Such instability occurs at very large values of reduced velocity ðUr4100Þ, where the vortex-
induced force has no appreciable influence on cylinder vibration. The main mechanism responsible for this
type of instability can be attributed to changes in the mean lift and mean drag force relative to cylinder
motion. Fluidelastic instability may also occur when the single cylinder is in the wake of another cylinder [6],
or in cylinder arrays [7,8]. The motion-dependent fluid force, in the form of fluid-damping force and/or fluid-
stiffness force, is responsible for fluidelastic instability in these cases.

Since fluidelastic instability can occur under different circumstances, its suppression is thus of importance to
a variety of engineering applications. In practical engineering problems, the flow is most likely turbulent.
According to So and Savkar [9], under certain flow conditions, free-stream turbulence can act to substantially
increase the fluctuating vortex-induced forces on a rigid cylinder. Their measurements were carried out on
rigid cylinders. The increased fluctuating forces can, in turn, influence the fluidelastic instability of the
fluid–structure system. Romberg and Popp [10] presented some interesting stability results from experiments
carried out on flow-induced vibrations of a flexibly mounted cylinder within an array of fixed cylinders. They
considered both fluidelastic instability and turbulent buffeting, and showed that large galloping motion can be
stabilized by grid-generated turbulence. In one of their experiments, Romberg and Popp [10] considered a
cylinder with very small structural damping. The total damping measured in the flow direction is high, and the
cylinder undergoes a galloping motion in the cross-flow (lift) direction at a certain reduced velocity Ur;cr.
Turbulence occurs in cylinder bundles due to upstream cylinder bundles acting as turbulence generators.
Additional turbulence was generated in this experiment by placing a turbulence grid at a specified distance in
front of the flexibly mounted cylinder. It was observed that as the upstream turbulence was increased in the
flow, a significant stabilization took place and the galloping instability did not occur for reduced velocity
values substantially higher than Ur;cr. The experiment also showed that turbulence intensity is a significant
factor influencing stability. Similar effects were observed in the experiments of a parallel triangular tube
bundle performed by Rottmann and Popp [11].

The stabilizing effect of turbulence has also been reported in the literature for bridge structures under
turbulent winds (e.g. Ref. [12]). An intuitive explanation has been given which states that turbulence may help
to transfer energy from the least stable mode to the more stable modes. Therefore, coupled modes have to be
considered in the stability analysis. In the study of stochastic dynamical systems, stabilizing a system by noise
is an important topic (e.g. Refs. [13,14]). For linear systems it is found that stabilization by white noise is
possible if and only if the trace of the system matrix, i.e. the sum of the eigenvalues, is negative. Pandey and
Ariaratnam [15] analyzed the stability of wind-induced torsional motion of slender bridges under stochastic
wind turbulence. They used a periodic excitation with random phase modulation to model turbulence in the
wind velocity. They found that turbulence has a small stabilizing effect on the bridge stability, although an
increase in the bandwidth of the excitation process does tend to stabilize the bridge motion. Rzentkowski
and Lever [16] used a nonlinear model to study turbulence effect on fluidelastic instability in tube arrays and
found that turbulence either reduces or has negligible effect on the stability boundary depending on the
vibration pattern.
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Poirel and Price [17] also found that turbulence could lower the speed of flutter of a two-dimensional airfoil.
They used the Dryden model to represent longitudinal turbulence. The stability boundary was determined by
obtaining the largest Lyapunov exponent via Monte Carlo simulation. Namachchivaya and Vedula [18]
theoretically proved that a four-dimensional system could be stabilized by real noise. They used a second-order
filter to model the noise and examined the moment stability and sample stability of the system by obtaining the
moment Lyapunov exponent and Lyapunov exponent. However, they did not validate the analytical results by
comparing with numerical results obtained by Monte Carlo simulation. The noise is very narrow-banded,
which seems to be unrealistic for practical turbulence. For more information, Ibrahim [19] gave a detailed
review about the noise effects, including stabilization by multiplicative noise and noise-enhanced stability
(NES), noise-induced transition, and stochastic resonance, on the stability of dynamical systems.

In the present study, the model developed in the previous study [4] is extended to take the effects of shear
flow and free-stream turbulence into account. A general nonlinear model is first proposed, then reduced to a
linear one for dynamic analysis of a single spring-supported cylinder in a turbulent shear flow at large Ur

values. Thus, the fluidelastic instability of the cylinder is studied, and the suppression of such instability by
free-stream turbulence in the approach flow is demonstrated through a stability analysis. The stochastic
stability of structures is introduced in Section 2.

Since grid-generated turbulence is nearly stationary and Gaussian, the fluctuating velocity in this type of
turbulent flow is modeled as an Ornstein–Uhlenbeck process. An analytical model developed by Zhu et al. [4]
is extended to represent the vortex-induced force on the cylinder in the case of shear flow. Finally, the
randomized equations of motion are obtained by substituting the expressions for the random velocity into the
original deterministic equations of motion, as is described in Section 3.

In Section 4, the dynamic stability of a four-dimensional system under real noise excitation is studied
through the determination of the p th moment Lyapunov exponent and the Lyapunov exponent. The partial
differential eigenvalue equation governing the moment Lyapunov exponent is established. For small noise
amplitudes, a method of regular perturbation is applied to determine analytical expansions of the moment
Lyapunov exponents and Lyapunov exponents. In this way, both the sample stability and moment stability
are studied.

In Section 5, the stability of the deterministic system is studied by varying the critical parameter (natural
frequency ratio k). The analytical results obtained in Section 4 are used to explore the stochastic stability
of a cylinder in a shear flow. It is shown that fluidelastic instability can be stabilized by turbulence under
certain conditions. Parametric studies are performed to demonstrate the significant effects of noise parameters
a and s on the stability of the cylinder. Analytical results and numerical simulations are compared to validate
the approach.
2. Dynamic stability of structures

The equation of motion for many flow-induced vibration problems is of the general form

q00ðtÞ þ ½2e0bþ e0mzðtÞ�q0ðtÞ þ o2
0qðtÞ þ f ½q; q0; e0zðtÞ� ¼ 0, (3)

where the prime denotes differentiation with respect to the time variable t, q is the generalized coordinate, b is
the damping constant, o0 is the circular natural frequency, e0 is a small fluctuation parameter, f ½q; q0; e0zðtÞ� is
a nonlinear function, and zðtÞ is a stochastic process that describes the random nature of the flow.

It is natural to ask how the parametric random fluctuation zðtÞ can influence the dynamic stability of system
(3). The dynamical stability of the trivial solution of system (3) is governed by the stability of the trivial
solution of the linearized equation

q00ðtÞ þ ½2e0bþ e0mzðtÞ�q0ðtÞ þ o2
0qðtÞ ¼ 0. (4)

The sample or almost-sure stability of the trivial solution of system (4) is determined by the Lyapunov
exponent, which characterizes the average exponential rate of growth of the solutions of system (4) for large t
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and is defined as

lqðtÞ ¼ lim
t!1

1

t
log kqðtÞk, (5)

where qðtÞ ¼ fqðtÞ; q0ðtÞgT and kqk ¼ ðqTqÞ1=2 is the Euclidean norm. If the largest Lyapunov exponent is
negative, the trivial solution of system (4) is stable with probability 1; otherwise, it is almost surely unstable.

On the other hand, the stability of the p th moment E½kqkp� of the solution of system (4) is governed by the p

th moment Lyapunov exponent defined by

LqðtÞðpÞ ¼ lim
t!1

1

t
logE½kqkp�, (6)

where E½�� denotes the expected value. If LqðtÞðpÞ is negative, then the p th moment is stable; otherwise, it is
unstable. The relationship between the sample stability and the moment stability was formulated by Arnold
[20]. The p th moment Lyapunov exponent LqðtÞðpÞ is a convex analytic function in p that passes through the
origin and the slope at the origin is equal to the largest Lyapunov exponent lqðtÞ, i.e.

lqðtÞ ¼ lim
p!0

LqðtÞðpÞ

p
. (7)

The moment Lyapunov exponents are important in obtaining a complete picture of the dynamic stability of
the trivial solution of system (4). Suppose the largest Lyapunov exponent lqðtÞ is negative, implying that the
trivial solution of system (4) is sample stable. However, the p th moment typically grows exponentially for
large enough p, implying that the p th moment of the trivial solution is unstable. The latter can be explained by
large deviation. While there is the solution of the system kqk ! 0 as t!1 with probability one at an
exponential rate lqðtÞ, there is also small probability that kqk is large, which makes the expected value E½kqkp�

of this rare event large for large enough values of p. This leads to the p th moment instability.
A systematic study of moment Lyapunov exponents is presented by Arnold et al. [21] for linear Itô systems

and by Arnold et al. [22] for linear stochastic systems under real noise excitations. The theory and techniques
of studying the stability of stochastic systems can be found in Xie [23].

3. Modeling of a spring-supported cylinder in shear flow

3.1. Deterministic modeling

Consider an elastically supported rigid cylinder in a cross-flow. The approach flow is assumed to be a linear
shear flow and two-dimensional. The equations of motion of the cylinder can be written as

€xðtÞ þ 2zsox _xðtÞ þ o2
xxðtÞ ¼

FX ðtÞ

M
, (8a)

€yðtÞ þ 2zsoy _yðtÞ þ o2
yyðtÞ ¼

FY ðtÞ

M
, (8b)

where xðtÞ and yðtÞ are cylinder displacements in the stream-wise and the cross-flow directions, respectively,
ox=y is the natural frequency, zs is the structural damping coefficient, and M is the mass per unit length of the
cylinder. In Eqs. (8a), (8b), F X ðtÞ and F Y ðtÞ are flow-induced forces per unit length acting on the cylinder in
the stream-wise and the cross-flow directions, respectively. For the present case, flow-induced forces may be
divided into two components: one arising from vortex shedding, and the other due to the feedback effect of
cylinder motion. Hence, they can be written as

F X ðtÞ ¼ FX
V ðtÞ þ F X

MðtÞ,

F Y ðtÞ ¼ FY
V ðtÞ þ F Y

MðtÞ,

where the subscripts ‘‘V’’ and ‘‘M’’ represent ‘‘vortex-induced’’ and ‘‘motion-dependent’’, respectively.
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When the cylinder is stationary, the motion-dependent fluid forces, FX
M ðtÞ and FY

M ðtÞ, are absent, and only
vortex-induced forces are applied to the cylinder. These are denoted as F X

V0
ðtÞ and FY

V 0
ðtÞ in order to

differentiate them from their counterparts when the cylinder is in motion. Once the cylinder is vibrating under
the action of vortex-induced forces, its motion can alter the vortex shedding behavior, thus changing vortex-
induced forces not only in their magnitudes but also in their dominant frequencies. In addition to vortex-
induced excitation, fluid flow will also affect the dynamics of the cylinder in the form of added mass, fluid
damping, etc. They are all included in the motion-dependent forces, FX

MðtÞ and F Y
MðtÞ, in the present

formulation.
In general, both vortex-induced and motion-dependent forces are unsteady, and their amplitudes are

nonlinearly dependent on a number of parameters, such as the Reynolds number, the reduced velocity,
structural damping, etc. Their exact expressions are thus complex and difficult to determine. In order for a
theoretical analysis to be carried out, approximate modeling is necessary.

3.2. Modeling of motion-dependent forces

Cylinder vibration induces fluid forces, such as the added mass and the fluid damping force. In the present
study, they are approximated as the linear combination

FX
M

FY
M

" #
¼ �

rpD2

4

cx
m cxy

m

cyx
m cy

m

" #
€x

€y

" #
þ

rU2

o0

cx
d c

xy
d

c
yx
d c

y
d

" #
_x

_y

" #
þ rU2

cx
k c

xy
k

c
yx
k c

y
k

" #
x

y

" #
, (9)

where cm, cd , and ck are the added mass, the fluid damping, and the fluid-stiffness coefficients, respectively. In
general, the added mass is considered to be equal to the mass of fluid displaced by the vibrating cylinder. As a
first approximation, the fluid damping force is assumed to be proportional to the velocity of cylinder
vibration. The fluid-stiffness term only affects the natural frequency of the fluid–structure system.
U = U0 + Gy

y

x

Initial position 
of the cylinder

Instantaneous position 
of the vibrating cylinder

X

Y

U0

x

y
FL

FD

U − X

Y
V

��

X
Y

Fig. 1. Illustration of the flow-induced forces. (a) A cylinder subjected to a shear flow; (b) drag and lift forces acting on the vibrating

cylinder.
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3.3. Modeling of vortex-induced forces

The model developed by Zhu et al. [4] is extended to represent vortex-induced forces acting on a vibrating
cylinder in shear flow. The basic idea of this model is illustrated in Fig. 1. According to the model, when the
velocity of cylinder vibration is small compared with the flow velocity, it is assumed that the unsteady vortex-
induced forces acting on the vibrating cylinder are equal to the vortex-induced forces acting on a similar
stationary cylinder, but with the direction of the approach flow changed by the velocity of cylinder vibration.
For a stationary cylinder, the vortex-induced forces are also stationary and can be represented by the bounded
noise processes. Vortex-induced forces can be thus expressed as

F X
V ðtÞ ¼ CX

V0
ðtÞ � cos yðtÞ þ CY

V0
ðtÞ � sin yðtÞ, (10a)

F Y
V ðtÞ ¼ CY

V0
ðtÞ � cos yðtÞ � CX

V0
ðtÞ � sin yðtÞ, (10b)

where CX
V0
ðtÞ and CY

V 0
ðtÞ are the drag and lift forces acting on the stationary cylinder, y is the angle between the

x-axis and the instantaneous velocity vector of cylinder vibration given by

yðtÞ ¼ tan�1
_y

U � _x
.

In a shear flow, the force coefficients can be expanded in terms of displacements (assumed to be small) of the
cylinder about its original position (0, 0), i.e.,

CX
V0
ðtÞ ¼

1

2
rV2D CDð0; 0; tÞ þ

qCDð0; 0; tÞ

qx
xþ

qCDð0; 0; tÞ

qy
y

� �
,

CY
V 0
ðtÞ ¼

1

2
rV2D CLð0; 0; tÞ þ

qCLð0; 0; tÞ

qx
xþ

qCLð0; 0; tÞ

qy
y

� �
,

where V is the relative velocity. The local velocity is also a function of the coordinate y only, i.e.,
U ¼ U0 þ Gy, where G is the shear gradient; therefore, the derivatives with respect to x are zero in the above
expressions, i.e., qCD=qx ¼ qCL=qx ¼ 0. When the cylinder velocity is much smaller than the flow velocity,
i.e., _xðtÞ5U and _yðtÞ5U , the relative velocity can be approximated as

V 2ðtÞ ¼ ðU0 þ Gy� _xÞ2 þ _y2 � U2
0 1þ 2

Gy� _x

U0

� �
.

Indeed, Eqs. (8)–(10) represent a nonlinear force evolution process. From Eqs. (8a), (8b), it can be seen that
vortex-induced forces excite the cylinder as a component of flow-induced forces and, in turn, the cylinder
response modifies vortex-induced forces according to Eqs. (10a), (10b). This interaction keeps evolving until a
dynamic steady state is reached. In general, the final vortex-induced forces are nonlinear [24]. If the approach
flow has a constant shear and turbulent, as considered in the present study, the resulting equations of motion
become very complicated. As a first attempt, a linear approximation is made in the present study for small
amplitude vibration, i.e.,

sin yðtÞ ¼
_yðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½U0 þ Gy� _xðtÞ�2 þ _y2ðtÞ
p �

_yðtÞ

U0
,

cos yðtÞ ¼
U0 þ Gy� _xðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½U0 þ Gy� _xðtÞ�2 þ _y2ðtÞ
p � 1.
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Substituting the above approximate expressions into Eqs. (10a), (10b), the vortex forces can be written as

FX
V ¼

1

2
rU2

0D CD þ
qCD

qy
yþ 2

Gy� _x

U0
CD þ

_y

U0
CL

� �
, (11a)

FY
V ¼

1

2
rU2

0D CL þ
qCL

qy
yþ 2

Gy� _x

U0
CL �

_y

U0
CD

� �
. (11b)

3.4. Modeling of grid-generated turbulence

Free-stream turbulence is considered as a disturbance to the approach flow velocity. This disturbance, in
turn, affects the fluid forces applied to the cylinder. Due to the random nature of turbulence, statistical
methods are commonly used to describe its behavior. Grid-generated turbulence is approximately stationary,
homogeneous, and isotropic (see, e.g., Ref. [25]), and can therefore be modeled by a stochastic process. To
simplify the problem, only the turbulence in the stream direction is considered.

For the case of one-dimensional flow, the flow velocity can be written as the sum of the mean value Ū and
the fluctuating part Ũ

UðtÞ ¼ Ū þ Ũ ¼ Ū þ ZðtÞ,

where ZðtÞ is a random process of mean zero. Experiments (see, e.g., Ref. [25]) have shown that the space
correlation function f ðrÞ has the form

f ðrÞ ¼ f ð0Þ exp½�r=Lx�,

where r is the distance between two correlated points in the x-direction, and Lx is the integral length scale. If
the field of fluctuating velocity is superimposed on a mean flow of velocity Ū in the x-direction, and if the
turbulence is small compared with the mean flow, the turbulence can be thought of being convected by the
mean velocity Ū without evolution, which is known as Taylor’s hypothesis. Thus, it is possible to interchange
time and space variables. The correlation function in time is related to the correlation function in space by
replacing the time t by r=Ū , i.e.

hŨ ðtÞŨ ðtþ tÞi ¼ RðtÞ ¼ f ðtUÞ, (12)

where RðtÞ is the correlation function in time. Hence, the corresponding time correlation function is given by

RðtÞ ¼ f ðtUÞ ¼ Rð0Þ exp½�jtjŪ=Lx�. (13)

Since Rð0Þ ¼ f ð0Þ ¼ s2x ¼ hŨ
2
ðtÞi (sx is the root-mean-square of the turbulent velocity fluctuations), the time

correlation function (13) at some fixed point in the flow field can be described by

RðtÞ ¼ s2x exp½�jtjŪ=Lx�. (14)

Based on experimental observations of grid-generated turbulence, the fluctuating velocity Ũ can be modeled as
an Ornstein–Uhlenbeck process (see, e.g., Ref. [26]). An Ornstein–Uhlenbeck process ZðtÞ is defined by the
one-dimensional Itô stochastic differential equation

dZðtÞ ¼ �a ZðtÞdtþ sdW ðtÞ; Zðt0Þ ¼ Z0,

where a and s are constants. The probability density function f ðZ; tÞ is described by the Fokker–Planck
equation

qf

qt
¼

s2

2

q2f

qZ2
þ a

qðf ZÞ
qZ

. (15)

If the initial condition Z0 is normal with mean 0 and variance s2=ð2aÞ, i.e., Z0�Nð0;s2=ð2aÞÞ, then ZðtÞ is a
stationary Gaussian process with mean zero, E½ZðtÞ� ¼ 0, and the correlation function is given by

RðtÞ ¼ E½ZðtÞ Zðtþ tÞ� ¼
s2

2a
e�ajtj. (16)
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An Ornstein–Uhlenbeck process is a simple, Gaussian, explicitly representable stationary process that is often
used to model a realizable noise process. As a result, it is also referred to as a real noise process. A limitation of
an Ornstein–Uhlenbeck process is that ZðtÞ is nowhere differentiable, which is unrealistic in most cases. For
further details, refer to the book by Pope [26]. Comparing the correlation function of the grid-generated
turbulence (Eq. (14)) with that of an Ornstein–Uhlenbeck process (Eq. (16)), one obtains

s ¼

ffiffiffiffiffiffiffi
2Ū

Lx

s
sx; a ¼

Ū

Lx

.

For the following perturbation analysis, let

ZðtÞ ¼ s0xðtÞ,

where s0 is a small parameter. By following Ito’s formula, one can obtain the governing stochastic differential
equation for xðtÞ, i.e.

dxðtÞ ¼ �a xðtÞdtþ sx dW ðtÞ; xðt0Þ ¼ x0,

where sx ¼ s=s0.

3.5. Randomizing equations of motion

Since the fluctuating velocity is small compared to the mean velocity Ū ¼ U0, one has the following
approximation:

U2 ¼ U2
0 1þ

s0
U0

xðtÞ
� �2

� U2
0ð1þ 2mxðtÞÞ,

where m ¼ s0=U0 is the noise intensity. By replacing the deterministic velocity U0 with the turbulent velocity
U ¼ U0ð1þ mxðtÞÞ and substituting the above approximate expression for U2 into Eqs. (11a), (11b), one
obtains

F X
VT ¼

1

2
rU2

0D½1þ 2mxðtÞ� CD þ
qCD

qy
y

� �
þ

1

2
rU0D½1þ mxðtÞ�½2ðGy� _xÞCD þ _yCL�, (17a)

F Y
VT ¼

1

2
rU2

0D½1þ 2mxðtÞ� CL þ
qCL

qy
y

� �
þ

1

2
rU0D½1þ mxðtÞ�½2ðGy� _xÞCL � _yCD�, (17b)

where the subscript ‘‘T ’’ means that the turbulence effect on the vortex-induced force is included. Similarly,
the randomized motion-dependent force is given by

F X
MT

F Y
MT

( )
¼ �

rpD2

4

cx
m cxy

m

cyx
m cy

m

" #
€x

€y

( )
þ

rU2
0½1þ 2mxðtÞ�

o0

cx
d c

xy
d

c
yx
d c

y
d

" #
_x

_y

( )

þ rU2
0½1þ 2mxðtÞ�

cx
k c

xy
k

c
yx
k c

y
k

" #
x

y

( )
. (18)

Substituting Eqs. (17) and (18) into Eq. (8), one can obtain the equations of motion for a cylinder in a
turbulent shear flow, which includes the vortex-induced force, the motion-dependent force, and turbulence.
When the effects of free-stream turbulence and shear flow are removed, this general model is reduced to the
model of Zhu et al. [4] for a cylinder in a uniform cross-flow. Zhu et al. [4] showed that parametric resonance
could occur as a result of an interaction between the x- and y-direction motion in the lock-in range. Both the
motion-dependent force and vortex shedding play a significant role in the vibration.

Yu et al. [5] found experimentally that fluidelastic instability could occur at high reduced velocity ðUr4100Þ
from Re ¼ 8 to 120. At this range of high Ur, the experimental results of Chen et al. [30] showed that the
motion-dependent damping and stiffness forces approached zero for a single cylinder in a cross-flow, and can
be neglected. Using these findings, the model considered here reduces to that of Yu et al. [5].
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Nondimensionalizing the equations of motion with respect to U0 and D, and applying the time scaling
t ¼ oxt, the equations of motion become

X 00 þ 2zþ
Urð1þ mxðtÞÞCD

Mr

� �
X 0 þ X �

U2
r ð1þ 2mxðtÞÞ

2Mr

qCD

qY
þ

U2
r ð1þ 2mxðtÞÞKCD

Mr

� �
Y

�
Urð1þ mxðtÞÞCL

2Mr

Y 0 ¼
U2

r ð1þ 2mxðtÞÞCD

2Mr

, (19a)

Y 00 þ k 2zþ
Urð1þ mxðtÞÞCD

2Mr

� �
Y 0 þ k2 1�

U2
r ð1þ 2mxðtÞÞ

2Mr

qCL

qY
�

U2
r ð1þ 2mxðtÞÞKCL

Mr

� �
Y

þ
kUrð1þ 2mxðtÞÞCL

Mr

X 0 ¼
k2U2

r ð1þ 2mxðtÞÞCL

2Mr

, (19b)

where

Mr ¼
M

rD2
; K ¼

GD

U0
; Ur ¼

U0

oxD
; k ¼

oy

ox

; X ¼
x

D
; Y ¼

y

D
.

At this range of Reynolds number, the shedding frequency varies slightly between 0.13 and 0.2 [27], which is
far removed from the natural frequencies of the cylinder. In addition, the mass ratio of the cylinder considered
here is quite large ðMr ¼ 5112Þ. Hence, the forced vibration due to vortex shedding is negligible. Furthermore,
additive noise does not affect the stability of the system [19]. For the analysis of fluidelastic instability, one can
neglect the force terms in the right-hand-side of Eqs. (19a), (19b), yielding, in the ‘‘state-space’’ form,

Z0 ¼ ÃZþ mxðtÞB̃Z, (20)

where Z ¼ ½X ;Y ;X 0;Y 0�,

Ã ¼

0 0 1 0

0 0 0 1

�1
U2

r

2Mr

qCD

qY
þ

U2
r KCD

Mr

� �
� 2zþ

UrCD

Mr

� �
UrCL

2Mr

0 �k2 1�
U2

r

2M

qCL

qY
�

U2
r KCL

Mr

� �
�

kUrCL

Mr

�k 2zþ
UrCD

2Mr

� �

2
666666664

3
777777775
,

B̃ ¼

0 0 0 0

0 0 0 0

0 2
U2

r

2Mr

qCD

qY
þ

U2
r KCD

Mr

� �
�

UrCD

Mr

UrCL

2Mr

0 2
k2U2

r

2Mr

qCL

qY
þ

k2U2
r KCL

Mr

� �
�

kUrCL

Mr

�
kUrCD

2Mr

2
666666664

3
777777775
.

If there is no turbulence in the approach flow, the stability of Eq. (20) is determined by the eigenvalues of the
system matrix Ã. If the real part of an eigenvalue is positive, the system is unstable. When upstream turbulence
is significant, the stability of Eq. (20) depends on Ã, B̃, and the characteristics of the noise term xðtÞ. Thus a
stochastic method (Section 4) has to be utilized in order to explore the stability of the system.
4. Moment Lyapunov exponent

Consider a linear stochastic system governed by the following equations of motion:

_̃x ¼ Ãx̃þ exðtÞB̃x̃; x̃ 2 R4, (21)
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where e is a small parameter. Assume that system (21) has one critical mode and one stable mode. Let x ¼ Tx̃,
where the matrix of transformation T is constructed from the eigenvectors of Ã. Specifically, if the eigenvalues
consist of two complex-conjugate pairs l1;2 ¼ �e2d1 � {o1 and l3;4 ¼ �d2 � {o2, and if the eigenvectors
associated with the eigenvalues are V1R þ {V1I and V2R þ {V2I , respectively, T can be chosen as
T ¼ ½V1R V1I V2R V2I �. The transformation then yields

_x ¼ Axþ exðtÞBx; x 2 R4,

where

A ¼

�e2d1 o1 0 0

�o1 �e2d1 0 0

0 0 �d2 o2

0 0 �o2 �d2

2
66664

3
77775; B ¼

K11 K12 M11 M12

K21 K22 M21 M22

N11 N12 L11 L12

N21 N22 L21 L22

2
6664

3
7775,

e2d1 and d2 represent the real parts of the eigenvalues corresponding to the critical mode and stable mode,
respectively, o1 and o2 are modal frequencies, and the matrix B is determined by B ¼ TB̃T�1. Applying the
transformation

x1 ¼ er cosf1 cos y; x3 ¼ er cosf2 sin y,

x2 ¼ �e
r sinf1 cos y; x4 ¼ �e

r sinf2 sin y,

one can obtain the following set of equations for the amplitude r, phase variables ðf1;f2; yÞ and noise process x:

_r ¼
X2
j¼0

ejqjðf1;f2; y; xÞ; _y ¼
X2
j¼0

ejsjðf1;f2; y; xÞ,

_fi ¼
X2
j¼0

ejhijðf1;f2; y; xÞ; dx ¼ �axdtþ sdW ðtÞ.

In the above expressions, the phase angles f1 and f2 are in (0, 2p), y is in ð0; p=2Þ, expressions for the coefficients
qj, sj, and hij are given in Appendix A, and a and s are defined as in the previous section.

Since the processes ðf1;f2; y; xÞ do not depend on r, the processes ðf1;f2; y; xÞ form a diffusive Markov
process and the associated generator is given by

L ðpÞ ¼ L 0ðpÞ þ eL 1ðpÞ þ e2L 2ðpÞ,

where

L 0 ¼
s2

2

q2

qx2
� ax

q
qx
þ
X2
i¼1

oi

q
qfi

þ s0ðf1;f2; y; xÞ
q
qy

,

L 1 ¼ s1ðf1;f2; y; xÞ
q
qy
þ
X2
i¼1

hi1ðf1;f2; y; xÞ
q
qfi

,

L 2 ¼ s2ðf1;f2; y; xÞ
q
qy
þ
X2
i¼1

hi2ðf1;f2; y; xÞ
q
qfi

.

Arnold et al. [21,22] have shown that LðpÞ is an isolated simple eigenvalue of LðpÞ with nonnegative
eigenfunction c, i.e.

LðpÞc ¼ LðpÞc for all real p, (22)

where

LðpÞ ¼ L0ðpÞ þ eL1ðpÞ þ e2L2ðpÞ
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and

L0ðpÞ ¼ L 0 þ pq0; L1ðpÞ ¼ L 1 þ pq1; L2ðpÞ ¼ L 2 þ pq2.

A method of regular perturbation is applied to obtain a weak noise expansion of the moment Lyapunov
exponent. Consider an expansion of the moment Lyapunov exponent in powers of e:

LðpÞ ¼ L0ðpÞ þ eL1ðpÞ þ e2L2ðpÞ þ ^ðe2Þ.

Substituting the above expansions into Eq. (22), one obtains the following equations:

ðL0ðpÞ � L0ðpÞÞc0 ¼ 0, (23)

ðL0ðpÞ � L0ðpÞÞc1 ¼ L1ðpÞc0 � L1ðpÞc0, (24)

ðL0ðpÞ � L0ðpÞÞc2 ¼ L2ðpÞc0 þ L1ðpÞc1 � L2ðpÞc0 � L1ðpÞc1, (25)

..

.

4.1. Zeroth-order perturbation

From the definition of LðpÞ, L0ðpÞ � 0 for all possible p. Thus, Eq. (23) reduces to

ðL 0 þ pq0Þc0 ¼ 0.

Using the method of separation of variables, one can easily obtain

c0ðf1;f2; y; xÞ ¼ c0ðyÞ ¼ ðcos yÞ
p. (26)

The solution to the associated adjoint equation of Eq. (23) is

C	0 ¼
Z	0ðxÞd0
4p2

,

where d0 is the Dirac delta function at 0, and Z	0ðxÞ is the stationary probability density of the
Ornstein–Uhlenbeck process xðtÞ. Details of the zeroth-order perturbation are given in Appendix B

4.2. First-order perturbation

Substituting the above expression for c0ðyÞ into Eq. (24) results in

L0c1 ¼ �s1ðf1;f2; y; xÞ
dc0

dy
þ ½L1ðpÞ � pq1ðf1;f2; y; xÞ�c0. (27)

From the Fredholm Alternative, for Eq. (27) to have a nontrivial solution it is required that

h�s1c
0
0 þ ½L1ðpÞ � pq1�c0;C

	
0i ¼ 0,

i.e.

L1ðpÞ ¼ hs1c
0
0 þ pq1c0;C

	
0i ¼

1

16p2
hxgðf1;f2; yÞ;Z

	
0ðxÞd0i ¼ 0, (28)

where hð�Þ; ð��Þi is the inner product defined by

hð�Þ; ð��Þi ¼

Z p=2

0

Z þ1
�1

Z 2p

0

Z 2p

0

ð�Þð��Þ df1 df2dxdy,

gðf1;f2; yÞ ¼ pðcos yÞpfK22 sin
2 f1 þ K11 cos

2 f1 �
1
2ðK12 þ K21Þ sin 2f1

þ 1
2
tan y½M11ðcosf

þ
þ cosf�Þ �M22ðcosf

þ
� cosf�Þ

�M12ðsinf
þ
� sinf�Þ �M21ðsinf

þ
þ sinf�Þ�g,

in which f� ¼ f1 � f2.
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The equality in Eq. (28) results from the fact that q1 and s1 are periodic in f1 and f2 (see Appendix A), and
x is a zero mean process. Hence, Eq. (27) reduces to

L 0c1 ¼ �xgðf1;f2; yÞ. (29)

Eq. (29) can be solved by applying Duhamel’s Principle and making use of the solution of the Fokker–Planck
equation (15). For more details, refer to Zhu et al. [28]. Thus, the solution to Eq. (29) is given by

c1ðf1;f2; y; xÞ ¼ �
1

2
pðcos yÞp K11 Gð2f1Þ �

1

a

� �
� K22 Gð2f1Þ þ

1

a

� �
� ðK12 þ K21ÞHð2f1Þ

�
þ tan y½M11ðGðf

þ
Þ þ Gðf�ÞÞ �M22ðGðf

þ
Þ � Gðf�ÞÞ

�M12ðHðf
þ
Þ �Hðf�ÞÞ �M21ðHðf

þ
Þ þHðf�ÞÞ�

�
xðtÞ,

where the functions Gð�Þ and Hð�Þ are defined in Appendix C.

4.3. Second-order perturbation

The equation for the second-order perturbation is

L0c2 ¼ ½L2ðpÞ � L2�c0 � L1c1. (30)

From the Fredholm Alternative, for Eq. (30) to have a nontrivial solution it is required that

h½L2ðpÞ � L2�c0 � L1c1;C
	
0i ¼ 0,

i.e.

L2ðpÞ ¼ hL2c0 þ L1c1;C
	
0i

¼ s2
q
qy
þ pq2

� �
c0 þ s1

q
qy
þ h11

q
qf1

þ h21
q

qf2

þ pq1

� �
c1;C

	
0

	 

.

After performing the integration, one obtains

L2ðpÞ ¼ ½�8d1 þ ðk2F0 þ k3F1 þ k4F 2 þ k5F 3 þ k6F 4Þ�
p

8
þ k2F0 þ

2k1
a

� �
p2

16
, (31)

where

k1 ¼ ðK11 þ K22Þ
2; k2 ¼ ðK12 þ K21Þ

2
þ ðK11 � K22Þ

2,

k3 ¼ ðN12 þN21ÞðM11 �M22Þ � ðN11 �N22ÞðM12 þM21Þ,

k4 ¼ ðN12 þN21ÞðM12 þM21Þ þ ðN11 �N22ÞðM11 �M22Þ,

k5 ¼ ðN11 þN22ÞðM12 �M21Þ þ ðN12 �N21ÞðM11 þM22Þ,

k6 ¼ ðN11 þN22ÞðM11 þM22Þ � ðN12 �N21ÞðM12 �M21Þ

and

F0 ¼
s2

a2 þ 4o2
1

,

F 1 ¼
s2ðo1 þ o2Þ

a½ðd2 þ aÞ2 þ ðo1 þ o2Þ
2
�
; F2 ¼

s2ðd2 þ aÞ

a½ðd2 þ aÞ2 þ ðo1 þ o2Þ
2
�
,

F 3 ¼
s2ðo1 � o2Þ

a½ðd2 þ aÞ2 þ ðo1 � o2Þ
2
�
; F4 ¼

s2ðd2 þ aÞ

a½ðd2 þ aÞ2 þ ðo1 � o2Þ
2
�
.
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The maximal Lyapunov exponent can be calculated by Eq. (7) as

l ¼ e2½�d1 þ 1
8
ðk2F0 þ k3F1 þ k4F2 þ k5F3 þ k6F4Þ�. (32)

From the above expressions, k1 and k2 are always positive. k3, k4, k5, and k6 can take on a positive or a
negative value depending on the values of the elements of matrix B. Similarly, the parameters F 0, F1, F 2, and
F4 are always positive, while the parameter F 3 can take on a positive or a negative value depending on the
difference between frequencies. From Eq. (32), one can see that the stabilization is possible if the total
contribution of turbulence is negative. If only x-direction motion is considered, Eqs. (31) and (32) reduce to
equations in k1, k2, and F0 only. Since they are all positive, the one degree-of-freedom system cannot be
stabilized, which agrees with the results of Xie [29]. Since all Fi (i ¼ 0; 1; . . . ; 4) include the term s2=a, which
represents the noise intensity, increasing the noise intensity can assist either the stabilization or the
destabilization effect of noise.
5. Study of stabilization

5.1. Deterministic system

Uniform flow: As presented in Section 3, the model will reduce to that of Zhu et al. [4] in the lock-in range
when the flow is uniform and laminar

Y 00 þ 2zþ
UrCD

2Mr

�
U2

r c
y
d

Mr

� �
Y 0 þ Y ¼

U2
r CL

2Mr

.

In the lock-in range, it can be shown that the vibration of the cylinder can be attributed to main resonance
arising from the lock-in forcing, to parametric instability due to time-variant fluid damping, and to constant-
fluid-damping-induced instability. The critical parameters are the motion-dependent damping coefficient and
the bandwidth of vortex shedding. At high reduced velocities ðUr420Þ, the motion-dependent force
coefficients approach zero and can be neglected [30]. Furthermore, the vortex shedding frequency is far
removed from the natural frequency of the cylinder, which eliminates the forced vibration due to vortex
shedding. Hence, the system is expected to be stable.

Shear flow: At high reduced velocities, motion-dependent forces are assumed to be negligible. The equations
of motion are thus reduced to those of Yu et al. [5]

X 00 þ 2zþ
UrCD

Mr

� �
X 0 þ X �

U2
r

2Mr

qCD

qY
þ

U2
r KCD

Mr

� �
Y �

UrCL

2Mr

Y 0 ¼
U2

r

2Mr

CD, (33a)

Y 00 þ k 2zþ
UrCD

2Mr

� �
Y 0 þ k2 1�

U2
r

2Mr

qCL

qY
�

U2
r KCL

Mr

� �
Y þ

kUrCL

Mr

X 0 ¼
k2U2

r

2Mr

CL. (33b)

The equations of motion (33a), (33b) have a similar form to those for wake galloping. As such, the derivative
qCL=qX is a critical parameter that determines instability [31]. The lift coefficient CL and its derivative
qCL=qY are also expected to play a significant role in the stability of a cylinder in a shear flow.

For a cylinder in a shear flow, the drag and lift coefficients, CD and CL, respectively, are functions of the
Reynolds number and the dimensionless shear parameter K. Since U ¼ U0 þ Gy is a function of y only, the
derivatives of CD and CL with respect to x are zero. The derivatives of CD and CL with respect to y can be
evaluated as

qCD

qy
¼

qCD

qRe

qRe

qy
þ

qCD

qK
qK

qy
, (34a)

qCL

qy
¼

qCL

qRe

qRe

qy
þ

qCL

qK
qK

qy
. (34b)
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After normalization, Eqs. (34a), (34b) can be written as

qCD

qY
¼

qCD

qRe
Re K �

qCD

qK
K2, (35a)

qCL

qY
¼

qCL

qRe
Re K �

qCL

qK
K2. (35b)

If extensive data of CDðRe;KÞ and CLðRe;KÞ are known, their derivatives with respect to Y can be calculated
by Eqs. (35a), (35b).

In order to demonstrate the fluidelastic instability of the system described by Eqs. (33a), (33b), consider an
example with the parameters Re ¼ 100, Mr ¼ 5112, and z ¼ 0:007. At this Reynolds number, data on the
variation of the drag and lift coefficients with Re and K are available from Lei et al. [32], and one finds

CD ¼ 1:486;
qCD

qK
¼ �0:32;

qCD

qRe
¼ �0:0016,

CL ¼ �0:126;
qCL

qK
¼ �1:0;

qCL

qRe
¼ 0:0005.

The stability depends on the eigenvalues of the system matrix A. If the real parts of the eigenvalues are
negative, the system is stable. When the reduced velocity increases to a critical value, the largest real part of the
eigenvalues become positive, i.e., the cylinder becomes unstable. Increasing the shear parameter also tends to
destabilize the cylinder. For example, the critical velocity for k ¼ 1:0 is Ur;cr ¼ 256 at K ¼ 0:1 and decreases to
about Ur;cr ¼ 112 at K ¼ 0:2. The stability boundary for a cylinder with Mr ¼ 5112 is determined
experimentally by Yu et al. [5] as approximately UrK

1:44=2p ¼ 5, which yields Ur;cr ¼ 865 at K ¼ 0:1. Clearly,
the results presented here do not agree quantitatively with the stability boundary obtained by Yu et al. [5]. The
discrepancies can be attributed to the fact that the Reynolds number was changed from 8 to 120 in the
experiments of Yu et al. [5] while the present results are obtained at Re ¼ 100. The lift and drag force
coefficients depend on the Reynolds number in this range. On the other hand, the effects of Ur and K on the
stability are qualitatively the same as the experimental observations. Both sets of results show that increasing
Ur or K can destabilize the cylinder. Similarly both sets of results indicate that increasing Mr, or decreasing
either Ur or K weakens the effect of CL, and thus makes the system more stable.

Similar to the case of galloping, the fluidelastic instability of a cylinder in a shear flow turns out to be
sensitive to the ratio of natural frequencies in the two coordinate directions. Small changes of frequency can
significantly shift the critical velocity (see Fig. 2(a)). The minimum critical velocity occurs at about k ¼ 0:95,
and the critical velocity increases rapidly with larger detuning in the frequencies. Note that this phenomenon is
also observed in the flutter of a two-dimensional linear airfoil by Poirel and Price [17].

5.2. Stochastic system

Uniform flow: The effect of free-stream turbulence in a uniform approach flow has been studied recently by
So et al. [33]. It was shown that the effect of free-stream turbulence in the case of a single cylinder in a cross-
flow is to increase the amplitude of cylinder vibration in the Ur range of 1.45–12.08. This is due to an increase
in the vortex-induced force in the Ur range of 1.45–7.25, and an increase in the fluid damping force in the Ur

range of 8.21–12.08. However, no unstable motion was observed. When Ur is increased to very large values, as
occurred in the present study, it is expected that the cylinder will remain stable.

Shear flow: When grid-generated turbulence is added to the flow, the governing equations of the cylinder
(Eqs. (19a), (19b)) are random differential equations. The Lyapunov exponent and moment Lyapunov
exponent of the system can be determined using the analytical method developed in Section 4. The critical
reduced velocity for the deterministic and stochastic systems are obtained and are shown in Fig. 2. From
Fig. 2(a), one can see that turbulence can shift the critical reduced velocity to a higher value and thus stabilize
the system. Fig. 2(b) gives the stabilized percentage rUr;cr of the critical reduced velocity and also shows that the
stabilization effect becomes smaller when a increases from 0.3 to 0.6. For each value of a, m varies with a from
1.0 to

ffiffiffi
2
p

in such a way that the turbulence intensity remains fixed, where the formula for turbulence intensity
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Fig. 2. Turbulence effects for different frequency ratio k with fixed Tu. (a) The critical reduced velocity Ur; (b) the stabilized percentage

rUr;cr of the critical reduced velocity.
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is given by

Tu ¼
msxffiffiffiffiffi
2a
p . (36)

Since a is related to the integral length Lx, this result implies that Lx is a key parameter for stabilization. The
effect of m on the stability is shown in Fig. 3. When m increases, the critical reduced velocity at which the
Lyapunov exponent is zero is shifted to a higher value. Since a is fixed and sx is chosen to be 0.5 for all cases,
this means that higher turbulence intensity can achieve a better stabilization effect.

It is also found that the stabilization effect of turbulence is sensitive to the ratio of frequencies k, as shown in
Fig. 2. Comparison of the critical velocities for different cases ðk ¼ 0:8521:15Þ in Fig. 2 shows that the
stabilization effect is more significant with larger detuning in frequencies. When there is no detuning ðk ¼ 1Þ,
turbulence increases the critical reduced velocity slightly from Ur;cr ¼ 256 to 261. When k increases or
decreases from 1, the differences in the critical reduced velocity increase significantly. For example, for k ¼ 0:9
and m ¼ 0:6, the critical reduced velocity increases from Ur;cr ¼ 243 for uniform flow to Ur;cr ¼ 283 -
for turbulent flow with m ¼ 0:6. To illustrate the influence of k, two cases (k ¼ 1 and 0:9) are considered here.
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Fig. 3. Stability boundary for k ¼ 0:9 and a ¼ 0:3.

Fig. 4. Lyapunov exponent for k ¼ 1:0 and Ur ¼ 280.
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For a cylinder in a shear flow with k ¼ 1:0 and Ur ¼ 280, the system matrices A and B are given by

A ¼

0:00215 0:97696 0 0

�0:97696 0:00215 0 0

0 0 �0:07719 1:06005

0 0 �1:06005 �0:07719

2
6664

3
7775,

B ¼

�0:00610 �0:01270 �0:05120 0:00657

0:04164 0:05830 �0:01271 0:08690

0:04965 0:05741 �0:16954 0:15978

�0:01000 �0:01749 �0:04129 �0:00474

2
6664

3
7775.
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The Lyapunov exponents can be calculated from Eq. (32) for different values of a and m as shown in Fig. 4. It
can be seen that Lyapunov exponents are decreased slightly when a is decreased or m is increased. However,
this stabilization effect is quite small and is not enough to stabilize the system. This is due to the weak
interaction between the two modes, which can be seen from matrix B. The elements Mij and Nij in the upper
right submatrix and lower left submatrix are relatively small. Thus, the sum of the product of kiþ2 and Fi

(i ¼ 0; 1; . . . ; 4) in Eq. (32) is small and the largest Lyapunov exponent remains positive.
When k ¼ 0:9 and Ur ¼ 260, the system matrices A and B are given by

A ¼

0:00267 0:91588 0 0

�0:91588 0:00267 0 0

0 0 �0:07076 1:01278

0 0 �1:01278 �0:07076

2
6664

3
7775,

B ¼

0:07601 0:02414 0:06375 �0:01045

0:01608 0:00607 �0:02520 �0:00767

�0:31696 �0:10233 �0:19893 0:05301

�0:05759 �0:01817 �0:05297 0:00725

2
6664

3
7775.

These two cases have similar matrix A. However, N11 and N12 in matrix B are relatively large compared to
those for k ¼ 1, which means that stronger interactions between two modes exist when the difference of
frequencies increases. Thus, energy can be transmitted from the critical mode to the stable mode via
turbulence, which results in stabilization. Rottmann and Popp [11] also reported the experimental observation
that the rocking mode of vibration switched from stable to unstable at high turbulence intensities in a fully
flexible bundle while the translational mode was stabilized. This partially proved the energy transfer between
two coupling modes.

The Lyapunov exponents for k ¼ 0:9 is shown in Fig. 5. The stabilization effect increases with a decrease of
a or an increase of noise intensity m. The same conclusion can also be drawn from moment Lyapunov
exponents shown in Figs. 6 and 7. It can be seen that the slope at p ¼ 0 for m ¼ 0:1 is positive, which means
that the system is unstable. When m increases, the slope at p ¼ 0 becomes negative and the system becomes
stable. Furthermore, the moment Lyapunov exponents are negative between p ¼ 0 and 0.8 for m ¼ 1 as shown
in Fig. 6, which demonstrates the moment stability of the system. From these figures, it is found that the
system is stabilized in the sense of both sample stability and moment stability.

The Lyapunov exponents and moment Lyapunov exponents can also be obtained by Monte Carlo
simulation (see, e.g., Ref. [23]). In the simulation, the system (Eqs. (19)) can be discretized using a Euler
Fig. 5. Lyapunov exponent for k ¼ 0:9 and Ur ¼ 260.
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Fig. 6. Moment Lyapunov exponent for a ¼ 0:3, k ¼ 0:9, and Ur ¼ 260.

Fig. 7. Moment Lyapunov exponent for a ¼ 0:2, k ¼ 0:9, and Ur ¼ 260.
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scheme with a time step Dt ¼ 10�6. Five thousand sample paths are simulated to calculate the moment
Lyapunov exponents. As shown in Figs. 5–7, the numerical results agree well with the analytical results for
larger values of a. One exception is Fig. 4 which shows significant discrepancies even when a is large. This is
because all the elements of matrix B are small compared to the value of m, which negatively impacts the
accuracy of the perturbation method. For all cases shown in Fig. 4, the discrepancy increases with decreasing
values of a. Figs. 6 and 7 also show that the perturbation results are better with relatively large values of a. The
power spectrum of real noise is more narrow-banded for the smaller values of a. The discrepancy can be
explained by the fact that one assumption for using perturbation method is that the noise is wide-banded.
Numerical results show that turbulence can destabilize the system when ao0:1. One possible explanation is
that the destabilization is due to parametric resonance. When a is small, the energy of the real noise is located
in the lower frequency range. Since the difference between o1 and o2 is small, parametric resonance
corresponding to a combination difference type could occur [17].

As mentioned in Section 4, the stabilization effect is more significant with decreasing a or increasing m.
Thus, the stabilization effect is proportional to the turbulence intensity, which agrees with the experimental
observations of Rottmann and Popp [11]. Experiments by Romberg and Popp [10] show that stabilization can
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be observed when turbulence intensity Tu is larger than 13%. In the present study, stabilization occurs at
Tu ¼ 6:5% (m ¼ 0:1 and a ¼ 0:3) (see Fig. 3). However, the effect of turbulence on the fluid force coefficients is
not taken into account in the present study. This is due to the lack of relevant experimental data for a cylinder
in a shear flow. In reality, the coefficients can be influenced by the turbulence intensity and the Reynolds
number [9,34]. Further experimental investigation on the effect of turbulence will be conducted in the future.
6. Conclusions

In this paper, the effect of real noise on the stability of a parametrically excited four-dimensional system is
considered. The dynamic stability of the system is studied by determining the moment Lyapunov exponents
and the Lyapunov exponents. For weak noise excitations, a regular perturbation method is employed to
obtain second-order expansions of the moment Lyapunov exponents. The Lyapunov exponent is then
obtained using the relationship between the moment Lyapunov exponent and the Lyapunov exponent. This
analytical method is applied to a circular cylinder in a shear flow, which is subjected to fluidelastic instability.

The analysis demonstrates that the cylinder can be stabilized by the real noise in the sense of both sample
stability and moment stability when proper parameters are selected. It is found that the stabilization is
sensitive to the frequency ratio k. A larger detuning can result in a better stabilization effect due to stronger
coupling between the two modes. Furthermore, the stabilization effect is proportional to the turbulence
intensity, which agrees with the experimental observations. The accuracy of the approximate analytical results
is determined by comparing them with numerical simulations.
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Appendix A. Transformation for polar coordinates

The transformation yields the following coefficients:

q0ðf1;f2; y; xÞ ¼ �d2 sin
2 y; q2ðf1;f2; y; xÞ ¼ �d1 cos

2 y,

q1ðf1;f2; y; xÞ ¼ ½
1
4
sin 2y½ðM11 þN11Þðcosf

þ
þ cosf�Þ � ðM22 þN22Þðcosf

þ
� cosf�Þ

� ðM21 þN12Þðsinf
þ
þ sinf�Þ � ðM12 þN21Þðsinf

þ
� sinf�Þ�

þ sin2 y½L11 cos
2 f2 þ L22 sin

2 f2 �
1
2
ðL12 þ L21Þ sin 2f2Þ�

þ cos2 y½K11 cos
2 f1 þ K22 sin

2 f1 �
1
2
ðK12 þ K21Þ sin 2f1��xðtÞ,

h10ðf1;f2; y; xÞ ¼ o1; h12ðf1;f2; y; xÞ ¼ 0,

h11ðf1;f2; y; xÞ ¼ ½K12 sin
2 f1 � K21 cos

2 f1 �
1
2ðK11 � K22Þ sin 2f1

� 1
2
tan y½M21ðcosf

þ
þ cosf�Þ þM12ðcosf

þ
� cosf�Þ

þM11ðsinf
þ
þ sinf�Þ �M22ðsinf

þ
� sinf�Þ��xðtÞ,

h20ðf1;f2; y; xÞ ¼ o2; h22ðf1;f2; y; xÞ ¼ 0,

h21ðf1;f2; y; xÞ ¼ ½L12 sin
2 f2 � L21 cos

2 f2 �
1
2
ðL11 � L22Þ sin 2f2

� 1
2
cot y½N21ðcosf

þ
þ cosf�Þ þN12ðcosf

þ
� cosf�Þ

�N22ðsinf
þ
þ sinf�Þ þN11ðsinf

þ
� sinf�Þ��xðtÞ,
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s0ðf1;f2; y; xÞ ¼ �
1
2
d2 sin 2y; s2ðf1;f2; y; xÞ ¼

1
2
d1 sin 2y,

s1ðf1;f2; y; xÞ ¼ ½
1
4
sin 2y½2L11 cos

2 f2 þ 2L22 sin
2 f2 � ðL12 þ L21Þ sin 2f2

� 2K11 cos
2 f1 � 2K22 sin

2 f1 þ ðK12 þ K21Þ sin 2f1�

� 1
2
sin2 y½M11ðcosf

þ
þ cosf�Þ �M22ðcosf

þ
� cosf�Þ

�M12ðsinf
þ
� sinf�Þ �M21ðsinf

þ
þ sinf�Þ�

þ 1
2
cos2 y½N11ðcosf

þ
þ cosf�Þ �N22ðcosf

þ
� cosf�Þ

�N12ðsinf
þ
þ sinf�Þ �N21ðsinf

þ
� sinf�Þ��xðtÞ.

Appendix B. Zeroth-order perturbation

For zeroth-order perturbation, one has a deterministic system

_r ¼ �d2 sin
2 y; _y ¼ �1

2
d2 sin 2y; _fi ¼ oi. (B.1)

Solving Eq. (B.1), one obtains

r ¼ �d2

Z t

0

sin2 yðsÞdsþ r0; y ¼ tan�1ðy0e�d2tÞ, (B.2)

where r0 and y0 are two constants which can be determined by the initial conditions. Since the zero-order
system is deterministic, it follows from the definition of LðpÞ,

L0ðpÞ ¼ lim
t!1

1

t
p log kxðt; x0Þk ¼ pl0, (B.3)

where kxk ¼ er and

l0 ¼ lim
t!1

rðtÞ
t
¼ � d2 lim

t!1

1

t

Z t

0

sin2 yðsÞds

¼ � d2 lim
t!1

1

t

Z t

0

tan2 yðsÞ
1þ tan2 yðsÞ

ds

¼ � d2 lim
t!1

1

t

Z t

0

y20e
�2d2s

1þ y20e�2d2s
ds ¼ 0.

Thus, L0ðpÞ � 0 for all possible p. Eq. (23) reduces to

ðL 0 þ pq0Þc0 ¼ 0,

where

L 0 ¼
s2

2

q2

qx2
� ax

q
qx
þ o1

q
qf1

þ o2
q

qf2

�
1

2
d2 sin 2y

q
qy

.

Applying the method of separation of variables and letting c0 ¼ F ðyÞZ0ðxÞH1ðf1ÞH2ðf2Þ results in

H 01
H1
¼ a1, (B.4a)

H 02
H2
¼ a2, (B.4b)

s2

2

€Z0

Z0
� az

_Z0

Z0
�

1

2
d2 sin 2y

F y

F
� pd2 sin

2 y ¼ �ða1 þ a2Þ. (B.4c)
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Solving equation for H1ðf1Þ yields H1ðf1Þ ¼ Aea1f1 . For H1ðf1Þ to be a periodic function, it is required
that a1 ¼ 0 and hence H1ðf1Þ can be chosen as 1. Similarly, a2 ¼ 0 and H2ðf2Þ ¼ 1. Hence, Eq. (B.4c)
reduces to

s2

2

€Z0

Z0
� az

_Z0

Z0
¼ a, (B.5a)

1

2
d2 sin 2y

F y

F
þ pd2 sin

2 y ¼ a. (B.5b)

Eq. (B.5a) is an eigenvalue problem with the eigenvalues given by a ¼ 0;�a;�2a; . . . (see, e.g., Ref. [35]).
However, the left-hand-side of Eq. (B.5b) goes to 0 since y approaches 0 when t!1. Thus, the constant a in
Eqs. (45a), (45b) should be be taken as 0. The equation for Z0ðxÞ becomes

1
2
s2 €Z0 � ax _Z0 ¼ 0, (B.6)

which can be easily solved to yield

Z0ðxÞ ¼ C1

Z
exp

a
s2

x2
� �

dxþ C2; �1oxo1.

For Z0ðxÞ to be bounded, it is required that C1 ¼ 0 and hence Z0ðxÞ can be taken as 1.
The equation for F ðyÞ becomes

dF

dy
¼ ð�p tan yÞF .

The solution to this equation is F ðyÞ ¼ ðcos yÞp. Therefore

L0ðpÞ ¼ 0; c0ðf1;f2; y; xÞ ¼ c0ðyÞ ¼ ðcos yÞ
p. (B.7)

Since L0ðpÞ ¼ 0, the associated adjoint differential equation of Eq. (23) is

L	0C
	
0 ¼

s2

2

q2C	0
qx2
þ ax

qC	0
qx
þ aC	0 � o1

qC	0
qf1

� o2
qC	0
qf2

þ
1

2
d2 sin 2y

qC	0
qy
þ ðd2 cos 2y� pd2 sin

2 yÞC	0 ¼ 0.

(B.8)

Applying the method of separation of variables and letting C	0ðf1;f2; y; xÞ ¼ F	ðyÞZ	0ðxÞH
	
1ðf1ÞH

	
2ðf2Þ

leads to

ðH	1Þf1

H	1
¼ b1, (B.9a)

ðH	2Þf2

H	2
¼ b2, (B.9b)

s2

2

€Z
	

0

Z	0
þ az

_Z
	

0

Z	0
þ aþ

1

2
d2 sin 2y

ðF	Þy
F	
þ ðd2 cos 2y� pd2 sin

2 yÞ ¼ �ðb1 þ b2Þ. (B.9c)

The equation for H	1 yields H	1ðf1Þ ¼ Be�b1f1 . For H	1ðf1Þ to be a periodic function, b1 ¼ 0 and H	1ðf1Þ can be
taken as

H	1ðf1Þ ¼
1

2p
; 0pf1o2p.

Similarly, one has

H	2ðf2Þ ¼
1

2p
; 0pf2o2p.
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The above equations show that f1 and f2 are uniformly distributed between 0 and 2p. Hence, Eq. (B.9c) is
reduced to

s2

2

€Z
	

0

Z	0
þ az

_Z
	

0

Z	0
þ a ¼ b, (B.10a)

�
1

2
d2 sin 2y

ðF	Þy
F	
� ðd2 cos 2y� pd2 sin

2 yÞ ¼ b. (B.10b)

Based on the same reasoning as mentioned above, b should be taken as 0.
The equation for Z	0 becomes

1
2
s2 €Z

	

0 þ ax _Z
	

0 þ aZ	0 ¼ 0, (B.11)

which is the Fokker–Planck equation for the stationary transition probability density of the Ornstein–
Uhlenbeck process xðtÞ as defined in Eq. (B.11). Eq. (B.11) may be written as

d

dx
dZ	0
dx
þ

2a
s2

zZ	0

� �
¼ 0

or

dZ	0
dx
þ

2a
s2

xZ	0 ¼ C3 ¼ probability current. (B.110)

Since the stationary probability density Z	0ðxÞ and the probability current vanishes when x!�1,
the constant of integration C3 ¼ 0. Eq. (B.110) can be easily solved to give

Z	0ðxÞ ¼ C4 exp �
a
s2

x2
� �

.

Since Z	0ðxÞ is the stationary probability density, normalizing it yields

Z	0ðxÞ ¼
1ffiffiffiffiffiffi
2p
p

sz

exp �
x2

2s2z

� �
, (B.12)

i.e. the Ornstein–Uhlenbeck process xðtÞ is a normally distributed random variable with mean mx ¼ 0 and
standard deviation sz ¼ sx=

ffiffiffiffiffi
2a
p

.
The equation for F	ðyÞ becomes

1

2
sin 2y

dF	

dy
¼ ðcos 2y� p sin2 yÞF	. (B.13)

Since y ¼ 0 is a stable equilibrium point of system (B.1), by following Pardoux and Wihstutz [36] the solution
can be chosen as

F	ðyÞ ¼ d0,

where d0 is the Dirac delta function at 0.
Hence, the solution to Eq. (B.8) is obtained as

C	0 ¼
Z	0ðxÞd0
4p2

.

Appendix C. Expressions in first-order perturbation

The following functions are used to express the solution to Eq. (28):

Gð2f1Þ ¼
2o1 sin 2f1 � a cos 2f1

a2 þ 4o2
1

,
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Hð2f1Þ ¼ �
2o1 cos 2f1 þ a sin 2f1

a2 þ 4o2
1

,

Gðf�Þ ¼
½ðo1 � o2Þ sinðf

�
Þ � ðd2 þ aÞ cosðf�Þ�

ðd2 þ aÞ2 þ ðo1 � o2Þ
2

,

Hðf�Þ ¼ �
½ðo1 � o2Þ cosðf

�
Þ þ ðd2 þ aÞ sinðf�Þ�

ðd2 þ aÞ2 þ ðo1 � o2Þ
2

.
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Lyapunov Exponents, Lecture Notes in Mathematics, Vol. 1186, Springer, Berlin, 1986, pp. 85–125.

[22] L. Arnold, W. Kliemann, E. Oeljeklaus, Lyapunov exponents of linear stochastic systems, in: L. Arnold, V. Wihstutz (Eds.),

Lyapunov Exponents, Lecture Notes in Mathematics, Vol. 1186, Springer, Berlin, 1986, pp. 129–159.

[23] W.-C. Xie, Dynamic Stability of Structures, Cambridge University Press, New York, 2006.

[24] X.Q. Wang, R.M.C. So, K.T. Chan, A nonlinear fluid force model for vortex-induced vibration of an elastic cylinder, Journal of

Sound and Vibration 260 (2003) 287–305.

[25] G.K. Batchelor, The Theory of Homogeneous Turbulence, Cambridge University Press, Cambridge, 1953.

[26] S.B. Pope, Turbulent Flows, Cambridge University Press, New York, 2000.

[27] S. Kang, Uniform-shear flow over a circular cylinder at low Reynolds numbers, Journal of Fluids and Structures 22 (2006) 541–555.

[28] J. Zhu, W.-C. Xie, R.M.C. So, Stabilization of a four-dimensional system under real noise excitation, in: C. Constanda, S. Potapenko

(Eds.), Integral Methods in Science and Engineering: Theoretical and Practical Aspects, Birkhauser, Boston, 2007.

[29] W.-C. Xie, Moment Lyapunov exponents of a two-dimensional system in wind-induced vibration under real noise excitation, Chaos,

Solitons and Fractals 14 (2002) 349–367.



ARTICLE IN PRESS
J. Zhu et al. / Journal of Sound and Vibration 321 (2009) 680–703 703
[30] S.S. Chen, Y. Cai, G.S. Srikantiah, Fluid damping controlled instability of tubes in crossflow, Journal of Sound and Vibration 217

(1998) 883–907.

[31] R.D. Blevins, Flow-Induced Vibration, second ed., Van Nostrand Reinhold, New York, 1990.

[32] C. Lei, L. Cheng, K. Kavanagh, A finite difference solution of the shear flow over a circular cylinder, Ocean Engineering 27 (2000)

271–288.

[33] R.M.C. So, X.Q. Wang, W.-C. Xie, J. Zhu, Free-stream turbulence effects on vortex-induced vibration of an elastic cylinder, Journal

of Fluids and Structures 24 (2008) 481–495.

[34] H.M. Blackburn, W.H. Melbourne, The effect of free-stream turbulence on sectional lift forces on a circular cylinder, Journal of Fluid

Mechanics 11 (1996) 267–292.

[35] C.W. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences, Springer, New York, 1985.

[36] E. Pardoux, V. Wihstutz, Lyapunov exponent and rotation number of two-dimensional linear stochastic systems with small diffusion,

SIAM Journal on Applied Mathematics 48 (2) (1988) 442–457.


	Turbulence effects on fluidelastic instability of a cylinder in a shear flow
	Introduction
	Dynamic stability of structures
	Modeling of a spring-supported cylinder in shear flow
	Deterministic modeling
	Modeling of motion-dependent forces
	Modeling of vortex-induced forces
	Modeling of grid-generated turbulence
	Randomizing equations of motion

	Moment Lyapunov exponent
	Zeroth-order perturbation
	First-order perturbation
	Second-order perturbation

	Study of stabilization
	Deterministic system
	Stochastic system

	Conclusions
	Acknowledgment
	Transformation for polar coordinates
	Zeroth-order perturbation
	Expressions in first-order perturbation
	References


